Windows装不上Wordcloud?看这里

如果你是一个写Python,且又喜欢做词云的朋友。

你应该遇到过Windows上跑不动你词云程序的情况,比如你可能在装Wordcloud时候会遇到如下情况:

虽然网上也有一些教程,但好像都不是很清晰。

有的教程,干脆让我们先去下载一个微软的Visual Studio……

其实,就差一个C++生成工具。

而这个工具包含在了Build tools这么个套件里面。

下载地址:

https://visualstudio.microsoft.com/zh-hans/thank-you-downloading-visual-studio/?sku=BuildTools&rel=16

打开以后不要慌,选中这个勾就行。

如果你的硬盘不富裕,就别全选了,继续往后边看。

我一般是选这几个。

然后,该程序会提醒你。要下载4.4GB左右的组件包。

管你要不要,反正它要下载。

好的一点是,它可以边下边安装,总算能节约一点时间。

下载完成后要重启生效。

然后,你的wordcloud就可以装上了。

下面写段代码测试一下:

from wordcloud import WordCloud

f = open('text.txt','r',encoding='utf8').read()
wordcloud = WordCloud(background_color="white",width=800, height=600, margin=2).generate(f)

# width,height,margin可以设置图片属性
wordcloud = WordCloud(font_path = r'simsun.ttf').generate(f)
# 你可以通过font_path参数来设置字体集
#background_color参数为设置背景颜色,默认颜色为黑色

import matplotlib.pyplot as plt
plt.imshow(wordcloud)
plt.axis("off")
plt.show()

wordcloud.to_file('test.png')

能生成词云了,只是不够好看,得再调整一下。

更多精彩内容,欢迎关注“IoT前哨站”的微博和公众号。我是王文文。

用Python实现经典游戏《小蜜蜂》

估计很多老玩家在小时候都玩过Galaxian(小蜜蜂)吧。这款射击游戏的鼻祖叫《太空侵略者》,上手简单,但可玩性很强。

高手用C语言精准复现的1978年《太空侵略者》版本

《太空侵略者》大火之后,新推出的Galaxian(小蜜蜂)于1979年成为其最大竞争对手。由Namco发行的Galaxian为外星敌人提供了新的色彩和不可预测的动作,后者不但会发射炮弹,还会自杀式俯冲攻击。

《Galaxian》在街机游戏中大受欢迎,以至于Namco在两年后又发布了续作《Galaga》——这款游戏使攻击模式更加复杂。

很难说《Galaxian》究竟有多少移植和克隆的版本,因为几乎每个家用游戏机上都有类似版本。

小霸王平台的《Galaxian》

玩家在《Galaxian》中的角色与《太空侵略者》类似,驾驶一艘飞船与一支外星舰队战斗。

与《太空侵略者》不同的是,在《Galaxian》中,外星人总会打破队形向玩家的飞船发起俯冲轰炸。

玩家需要摧毁所有敌人,然后进入下一关。随着玩家的推进,一波又一波的敌人将让过关变得更加困难。

我们这里将着眼于外星人的俯冲机制,用Pygame Zero开发《Galaxian》游戏的核心功能。

用Pygame Zero开发的版本

首先,《Galaxian》拥有一个纵向显示画面,所以我们将游戏区域的宽度和高度分别设置为600和800。

接下来,我们可以用位图创建一个滚动的星空背景。​将位图逐渐往屏幕下方移动,用第二颗恒星来填充第一颗恒星向下滚动时留下的空间,我们还可以在后面添加另一个静态背景图像,这将提供一些视野深度。

然后,我们将玩家的飞船设置为Actor。并在update()函数中捕获左右箭头键,以便在屏幕上左右移动飞船。我们也可以用空格键发射子弹,子弹会沿屏幕向上移动,直到击中外星人或离开屏幕顶部。

和原版《Galaxian》一样,你一次只能发射一颗炮弹,所以我们只需要一个Actor。

外星人排成一行,一起在屏幕上左右移动。在这个例子中,我们只画一种类型的外星人,共画两行。你可以添加额外的类型和任意多行。当我们创建alien Actors时,我们还可以添加一个状态标志,我们需要确定当它们打破队形时,它们在行的哪一边,两边朝相反的方向飞行。在这种情况下,每行左边有4个外星人,右边有4个。

一旦它们在列表中建立起来,我们就可以在每次更新时遍历列表,并向前或向后移动它们。

当我们在移动外星人时,我们也可以查看它们是否与炮弹或玩家飞船相撞。

如果与炮弹碰撞,那么外星人将使用状态标志连续播放爆炸的那几帧,当状态达到5时,它们将不再被绘制到界面上。

如果碰撞发生在玩家的飞船身上,那么玩家会死亡,游戏也就结束了。

我们也可以检查一个随机数,看看外星人是否开始轰炸。如果是,我们将状态设置为1,这将开始调用flyAlien()函数。这个函数会检查外星人的位置,并根据侧边的不同改变外星人的角度,然后根据角度更改x和y坐标。为了方便大家看明白,我们这里处理的比较简单,你也可以使用一些乘数变量将其折叠到x坐标和角度上,将其收窄。

相关代码:

https://github.com/IoToutpost/Python_game

要运行调试请先安装Pygame Zero。

现在大家应该初步掌握了Galaxian游戏的基础知识。你可以试着完善它了。

树莓派支持Visual Studio Code了

作为开发者来说,IDE是一个必不可少的工具。

不过大部分火力强劲的IDE都是跑在x86架构上的,除非某些大厂为了兼容自己的产品,否则鲜有支持其它架构的大众流行IDE。

没想到的是,最近树莓派官方支持VS Code了。

VS Code是一款免费的开源IDE,最初是为x86架构的Windows,macOS和Linux准备的。开箱即用,支持常规文本编辑和git源代码控制,本地或远程调试。扩展功能强大,可支持JS、Python、Golang等广泛的编程语言。

如果你的树莓派正在运行Raspberry Pi OS ,那现在只需要运行两条命令,VS Code就能在你的系统上跑起来了。

sudo apt update 
sudo apt install code -y

安装VS Code之后,你可以从Raspberry Pi菜单中的Programming目录里运行它。

顺便说一句,尽量用4GB内存或更高版本的树莓派哦。

用树莓派和Lobe-python做智能垃圾分类

国外一个名叫Jen Fox的创客分享了一个由Raspberry Pi驱动的垃圾分类设备,该设备能告诉我们,当前的垃圾是可回收的,可堆肥的,还是有害的。

这个项目对初学者很友好,因为你不需要任何代码来训练机器学习模型,只需要稍微花点时间就可以将其加载到Raspberry Pi上。

这也是一个相当经济的装置,包括Raspberry Pi 4在内,价格不到70美元。

硬件:

Raspberry Pi 4B
树莓派摄像头模块
Adafruit 按钮
Adafruit LED

软件:

免编码的机器学习模型是用Lobe创建的,这是一个免费的桌面应用程序,可根据显示的对象自动训练图像分类器。

图像分类器认出了瓶盖

训练图像分类器:

基本上,你要上传一大堆的图片,然后告诉Lobe(分类程序)每一张图片显示的是什么对象。

比如哪些图片是可堆肥垃圾,哪些是可回收利用的物品,哪些是对生物有害的垃圾。当然,正如Jen所说,“你拥有的图片越多,模型识别起来越准确。”

接好摄像头模块的树莓派4B

你只需要编写少量代码就可以将图像分类器加载到树莓派上。Raspberry Pi摄像头充当图像分类器的“眼睛”,因此树莓派可以认出你要区分的垃圾种类。

将按钮和LED连接到Raspberry Pi的GPIO引脚,让它们与摄像头一起工作,并根据图像分类器识别“看到”的内容,点亮相应的LED。

将按钮和LED连接到GPIO引脚的示意图

当然,你要先找个盒子,最好可以安在墙上。

然后在纸板箱上钻一个方形的孔,以确保摄像头可以“看到”垃圾。

再钻几个孔,以便用户能看到LED灯,并可以接触按钮。

记得为Raspberry Pi的电源留出空间,以便接线。

Jen把盒子装在墙上,开始识别一个塑料袋

该项目源码地址:

https://github.com/IoToutpost/TrashClassifier

来自:Raspberrypi.org

编译:王文文

Mini Raspberry Pi ——受波士顿动力启发的四足机器人

波士顿动力的机器狗,每次升级都会让大家眼前一亮。

波士顿动力-机器狗

但大家能不能用开源软件DIY一只呢?

一个外国朋友就在Raspberry Pi 3B的基础上开发了“Spot Micro”四足机器人。

树莓派开发的机器狗

通过构建此项目,redditor/thetrueonion(又名Mike)用C++和Python自学机器人软件开发,让机器人行走并掌握速度和方向控制。

Mike受到了Spot的启发,而Spot是波士顿动力公司为工业开发的机器人之一,可以执行远程操作和自主感应。

它如何行走?

迷你“Spot Micro”机器人通过键盘调整三轴角度命令/身体姿势控制模式,可以实现“步行状态”或“小跑状态”。

前者是一种四阶段步态,一次有两条腿对称运动(就像小跑)。

后者是八阶段步态,一次腿部摆动,并且在两者之间进行身体移动以保持平衡(就像人类走路一样)。

在此广泛的演练中,Mike分解了如何使机器人行走,并按顺序将舵机连接到PCA9685控制板。

操作系统和框架

Ubuntu 16.04 + ROS

用到那些零件?


1、树莓派3B
2、舵机控制板:PCA9685,通过I2C控制
3、舵机:12×PDI-HV5523MG
4、液晶面板:16×2 I2C液晶面板
5、电池:2s 4000 mAh锂电池,直接连接至电源伺服器
6、UBEC:HKU5 5V/5A ubec,作为5V稳压器为Raspberry Pi,LCD面板,PCA9685控制板供电
7、“Spot Micro”的Thingiverse 3D打印文件

代码地址:

https://github.com/mike4192/spotMicro

老游戏新写之Jetpac重返地球

主人公流落外星球,遇到一群不讲道理的外星人。想跑路,载具又摔得七零八落。

任务:​顶着外星人的进攻,把宇宙飞船的零件都找回来组装好,然后为其添加燃料。最后安全逃离,重返地球。

这是由Chris和Tim Stamper兄弟于1983年创建的8位机游戏Jetpac里的剧情,也是其工作室Ultimate Play the Game出品的首批热门游戏之一。

8位ZX Spectrum电脑上的Jetpac

而当一个宇航员和Ultimate Play the Game的徽标在屏幕上出现时,你知道之前的等待是值得的(八十年代能有这么个游戏玩已经很激动)。

游戏的角色是不幸的宇航员杰特曼,他必须收集四处散落的零件,制造火箭并为其添加燃料,同时还要与成群的致命外星人战斗。

本文提供的代码片段包含收集火箭零件和燃料,以便杰特曼搭载火箭起飞的技巧。

我们可以对所有屏幕元素和Actor碰撞例程使用内置的Pygame Zero Actor对象,以便处理重力并拾取物品。

首先,我们需要初始化Actor。

我们需要游戏中的主人公杰特曼,地面,火箭的三个零件,还有火箭发动机所需的一些燃料。

每个Actor的行为方式将由一组列表决定。我们有一个重力对象列表,每帧绘制的对象,平台列表,碰撞对象列表以及可以拾取的对象列表。

杰特曼跳进火箭,回家了。欢呼!

我们的draw()函数很简单,因为它循环遍历绘制列表中的项目列表,然后再绘制几个条件元素。

update()功能是所有动作发生的地方:我们检查键盘输入来移动杰特曼,将重力应用于重力列表上的所有项目,检查与平台列表的碰撞,如果杰特曼触摸它,则拾取这个项目(对象),应用对杰特曼的任何推力,并移动杰特曼持有的任何物品随他一起移动。

完成所有操作后,我们可以检查添加的燃料量是否已达到火箭可升空的程度。

如果查看辅助函数checkCollisions()checkTouching(),你会发现它们使用了不同的碰撞检测方法,第一种方法是检查与指定点的碰撞,以便我们可以检测到与actor顶部或底部的碰撞以及触摸冲突是矩形或边界框的冲突,因此如果两个Actor的边界框相交,则会记录一个冲突。

另一个辅助函数applyGravity()使重力列表中的所有元素向下移动,直到Actor的底部撞到碰撞列表上的某物为止。

目前的程序主要就是组装一枚火箭,加满燃料,然后升空。你后续要添加的是一群讨厌的外星人,以及一种用激光枪摧毁它们的方法。

以上就是Mark的Jetpac代码,你可以在这里下载。

https://github.com/IoToutpost/Python_game/

Have fun.

八年无人干预的蜂巢健康监测系统

用技术更好的感知世界,一直是大家追求的目标。

大学毕业后,Glyn Hudson一直忙着创业,成立了一家名叫OpenEnergyMonitor的能源监测公司。

在威尔士的斯诺登尼亚,他接触到几个蜂箱,每年可生产12至15公斤蜂蜜。

作为变温动物,蜜蜂的体温会随着气温而变化。因此,温度是影响蜜蜂生活的重要因素之一。

怎样才能时刻获知蜜蜂当前的生活环境是否适宜?蜂箱里会不会太潮?温度会不会太热?

Glyn打算通过获悉蜂箱内外的温度和湿度,构建一个监测蜂群健康的系统 —— BeeMonitor。

格林(Glyn)在检查BeeMonitor装置
既要监测蜂巢内部的温湿度,也要监测核心温度、周边温湿度、蜂巢外部的温湿度,然后进行比较。
电子组件连接示意图

Glyn解释说:“蜜蜂需要获得更好的帮助和关爱,如果没有它们给植物授粉,我们将很难种庄稼。

为了保持健康的育雏温度,我们要让蜂巢保持33.5-34.5度,而这一温度也是菌落健康的关键指标。”

没有Wi-Fi怎么办

BeeMonitor这套系统在2012年就开始跟踪蜂群的状态,也是Raspberry Pi最早的成功案例子之一。

Glyn自己为BeeMonitor做了大部分工作,而之前为OpenEnergyMonitor项目开发的软件提供了可以在线查看数据记录和图表的平台。

穿着防护服的观众参观 BeeMonitor 蜂箱

蜂箱距离房屋太远,无法通过Wi-Fi传输。因此Glyn装了一个低功耗的RF发射器,该发射器连到蜂巢内部的Arduino,以便进行读数。然后再由远端的Raspberry Pi和另外一个Arduino接收。

该装置的远端部分包括了Arduino,RF接收器,USB电缆和树莓派

这些数据被保存到SD卡,明显的缺点是它不显示实时数据读数。在最初的设定中,Glyn还必须亲自提取和分析CSV数据。

他说:“这非常耗时,但确实产生了一些有趣的数据。”

传感器的取舍

BeeMonitor成功运转后,Glyn意识到数据在Internet上实时传输会更好。这样一来,他就可以从任何地方查看实时的蜂箱数据,还可以让其他人参与其中。

最初,蜂箱内部有一个DS18B20温度传感器和一个DHT22湿度传感器。但Glyn后来决定放弃DHT22湿度传感器。

相关设置方式:

https://learn.openenergymonitor.org/electricity-monitoring/temperature/DS18B20-temperature-sensing

“它消耗了很多电量,而蜜蜂还不喜欢它,一直在用蜂蜡覆盖湿度传感器!奇怪的是,蜜蜂似乎并不介意DS218B20温度传感器,大概是因为与DHT22的塑料格栅相比,温度传感器是圆形的金属物体,” Glyn指出。

与湿度传感器不同,蜜蜂似乎不在乎温度传感器的探头

该系统由一个旧的汽车电池和一个小的太阳能电池板供电,运营成本可以忽略不计。

目前已稳定运行八年,几乎不用人工干预。

“Raspberry Pi非常适合在低功耗状态下可靠地运行此类项目。”Glyn说。

他之所以选择树莓派,是因为硬件背后繁荣的社区。以及有竞争力的价格 —— 整个装置花了他大约50英镑。

相关代码地址:

https://github.com/glynhudson/BeeMonV2

Glyn告诉我们,(如果不考虑联网)仅用树莓派,DS28B20温度传感器,电池组和太阳能电池板结合,就足以打造一个基本的蜂巢监测器。

来源:Raspberrypi.org

编译:王文文

树莓派音乐盒,让你像DJ一样玩音乐

用按钮来控制LED灯,是树莓派比较经典的一种应用。

那用按钮来控制音乐呢?

我们这次的任务是做个树莓派音乐盒,以便你能像DJ一样,通过它不停的切换和调整音乐。

硬件需求:

  • 树莓派1个
  • 面包板1个
  • 接触式开关4个
  • 公对母跳线5根
  • 母对母跳线4根
  • 扬声器或耳机1个

软件需求:

Raspbian 最新版

制作过程:

先找到你想播放的音频文件,如果你自己没有什么准备,可以在Raspbian系统的/usr/share/sonic-pi/samples目录中找一些示例音乐。

不过你要用Python播放声音的话,得将里面的.flac文件转换为.wav文件。

批量转换命令:

for f in *.flac; do ffmpeg -i "$f" "${f%.flac}.wav"; done

如果没出错,你现在应该得到大量的wav文件了。

挑出四个备用,对应4个按钮。将其保存在gpio-music-box目录中

drum_tom_mid_hard.wav
drum_cymbal_hard.wav
drum_snare_hard.wav
drum_cowbell.wav

电路最基本的接法:

当然,用面包板会让你更方便。

示例程序中有四个按钮,所以我们要分别接入GPIO4、10、17、27四个口。

接下来开始撸代码。

import pygame
from gpiozero import Button

pygame.init()

drum = pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_tom_mid_hard.wav")
cymbal = pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_cymbal_hard.wav")
snare = pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_snare_hard.wav")
bell = pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_cowbell.wav")

btn_drum = Button(4)
btn_cymbal = Button(17)
btn_snare= Button(27)
btn_bell = Button(10)

btn_drum.when_pressed = drum.play
btn_cymbal.when_pressed = cymbal.play
btn_snare.when_pressed = snare.play
btn_bell.when_pressed = bell.play

以上的代码应该能正常工作,但不够简洁优雅,我们用Python的字典功能来优化一下。

创建一个字典。

button_sounds = {Button(4): pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_tom_mid_hard.wav"),
                 Button(17): pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_cymbal_hard.wav"),
                 Button(27): pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_snare_hard.wav"),
                 Button(10): pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_cowbell.wav")}

然后用Button作为键,Sound作为值。

优化后的代码:

import pygame
from gpiozero import Button

pygame.init()

button_sounds = {Button(4): pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_tom_mid_hard.wav"),
                 Button(17): pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_cymbal_hard.wav"),
                 Button(27): pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_snare_hard.wav"),
                 Button(10): pygame.mixer.Sound("/home/pi/gpio-music-box/samples/drum_cowbell.wav")}

for button, sound in button_sounds.items():
    button.when_pressed = sound.play

是不是简洁多了?

好了,拿去玩吧。

视频讲解地址:

https://v.qq.com/x/page/x0967xsxe7j.html

线索:Raspberrypi.org

编译:王文文

你能不损失数百万美元成功登月吗?

对航空知识有兴趣的朋友都知道,飞行器在月球软着陆不是一件容易的事情。

即使在刚刚过去的2019年,印度也没能成功实现该技术,承载着希望的“月船2号”着陆器在距离月球表面2.1公里的时候失去了信号,从此不知所踪。

迄今为止,只有中美俄三个国家实现了月球软着陆。

印度“月船2号”着陆器失联前的直播画面

在阿波罗11号登月十周年纪念日的时候,阿塔里(Atari)公司曾经出了一款名叫“Lunar Lander”的投币式街机游戏。

游戏的玩法是通过方向调整和推力控制来引导你的着陆器,将其轻轻地放到安全而平坦的停靠区。如果玩家能将着陆器成功停放在更具挑战的险峻区域,将获得额外的积分。

街机的版本是有操纵杆的,玩家可以用其控制方向和大小不同的推力,并以屏幕顶部的海拔,水平速度和垂直速度为指导,在燃料有限的情况下按时降落飞船。

游戏内置了四个难度级别,分别调整了着陆控制器和着陆区域,玩家需要凭借高超的技巧才能涉险过关。

我们这次用Pygame Zero来简单还原一下这款游戏,如果你不打算外接操纵杆,用键盘操作也可以。

构思

首先用绘制好的静态背景替换矢量图形,并将其用作碰撞检测和高度统计。

如果我们的背景是着陆器可以飞行的黑色背景,而着陆区所在的地方是另一种颜色,那么我们可以使用Pygame的image.get_at()函数来测试像素点是否在着陆位置。

我们还可以检测着陆器沿Y轴向下的像素线,直到抵达着陆区,这将让我们获悉着陆器当前的高度。

着陆器的控制非常简单,因为我们可以捕获左右箭头键来增加或减少着陆器的旋转角度。

然而当施加推力(通过按向上箭头)时,事情会变得有些复杂。我们需要记住推力来自哪个方向,让飞船即使打转也将继续沿该方向运动。所以我们在着陆器对象上附加了direction属性。对着陆器的位置施加一点重力,然后我们只需要一点三角函数的知识即可根据着陆器的速度和行进方向算出其运动轨迹。

要判断着陆器安全着陆还是在月球表面撞坏,我们要观察其到达高度1时,飞行器的下降速度和角度。

如果速度足够慢且角度接近垂直,则我们触发着陆成功的消息,游戏结束。

如果着陆器在没有满足这些条件的情况下达到零高度,则我们将判定坠机事故。

有兴趣的话,你还可以在此基础上添加一个有限的燃料表和可变的难度级别之类的东西。甚至可以尝试添加原始街机游戏中火箭助推器噪音的声音。

要点:

推力方位的改变可以有多种方法完成。在本例中我们简单一点,一个方向被施加推力,它就逐渐往那个方向移动,直到新的方向出现推力。你可以尝试对其进行X轴和Y轴方向计算,以获得结合点的坐标值。还可以添加操纵杆控制,提供可变的推力。

以下是核心代码段:

接下来看看效果:

视频:https://v.qq.com/x/page/b095944gc59.html

完整代码请访问:https://github.com/IoToutpost/Python_game

调试前记得先安装Pygame Zero。

线索:Wireframe #37

编译:王文文