为避免重新洗衣服而做的降雨报警机

没有什么比刚晾干的衣服更舒服了,除非一场突如其来的阵雨把一切都毁了。

从一名家庭成员那里听到:“下雨了!”,然后紧接着是楼梯上雷鸣般的脚步声。

这样的话太惨了。

想要拯救你最好的周日时光,免于再一次去洗衣房的痛苦吗?

看看这个小东西。

当雨点开始时,这个简单的设备就会在你的手机检测到雨点时发出警报。不需要焊接,只需要几根电缆。借助低功耗电路板和WiFi,我们能做出一个基于Raspberry Pi Zero W的完美项目。

测雨器需要的组件:

2个雨水传感器板和一个控制器
面包板
充电宝
密封小食品容器
跳线
树莓派 Zero w

核心代码:

from gpiozero import DigitalInputDevice
from time import sleep
import http.client, urllib.parse

# Some setup first:
APP_TOKEN = ‘YOUR_PUSHOVER_APP_TOKEN’ # The app token – required for Pushover
USER_TOKEN = ‘YOUR_PUSHOVER_USER_TOKEN’ # Ths user token – required for Pushover

# Set up our digital input and assume it’s not currently raining
rainSensor = DigitalInputDevice(17)
dryLastCheck = True

# Send the pushover alert
def pushover(message):
print(message)
conn = http.client.HTTPSConnection(“api.pushover.net:443”)
conn.request(“POST”, “/1/messages.json”,
urllib.parse.urlencode({
“token”: APP_TOKEN, # Insert app token here
“user”: USER_TOKEN, # Insert user token here
“title”: “Rain Detector”,
“message”: message,
}), { “Content-type”: “application/x-www-form-urlencoded” })
conn.getresponse()

# Loop forever
while True:

# Get the current reading
dryNow = rainSensor.value
print(“Sensor says: ” + str(dryNow))

if dryLastCheck and not dryNow:

pushover(“It’s Raining!”)

elif not dryLastCheck and dryNow:

pushover(“Yay, no more rain!”)

# Remember what the reading was for next check
dryLastCheck = dryNow

# Wait a bit
sleep(5)

在做其他事情之前,在SD卡上安装一个Raspbian Stretch Lite(我们不需要桌面),然后插入到Pi中。确保已启用SSH访问。执行sudo apt更新和升级的常规程序,然后重启,检查SSH连接,然后关机。

将传感器安装到盖子上:

你可以使用任意数量的传感器,但是两个就可以了。用保温层或管道胶带将两块板固定在盖子上。

注:3d打印外壳图片(STL文件可从这里得到)。

需要连接两对跳线;每个传感器板一个,极性无关紧要。电缆的另一端必须穿入容器内,所以在适当的地方尽可能地挖一个小洞,这样电线才能通过,从而减少水进入的机会。

将传感器连接到控制器

为了让树莓派明白发生了什么,一个小的控制板(与传感器一起提供)是必需的。这就把被水短路的小电流转换成数字信号。利用面包板,将传感器上的两对导线并联起来(这样两个传感器都可以构成电路),然后将控制器的接收引脚(带有两个连接器的一侧)插入到面包板上,使每个引脚与传感器上的一根导线相连。

连接控制器

为了完成我们的电路,仔细看看控制板上的四个引脚。它们将被标记为A0、D0、GND和VCC。

使用一些跳线,将控制器与Pi连接如下:

VCC到GPIO pin 2 (5v),

GND到GPIO上的任何GND(例如pin 6),

D0到GPIO 17 (pin 11)。

D0和A0是传感器读取输出的两种不同方式。D0是一个直接的数字开关,阈值由板子上的可变电阻控制。A0是一个模拟输出(当转换为数字时),范围在0到1024之间,取决于雨的强度。

装配雨探测器

把充电宝接上树莓派,然后放进容器。理想情况下,东西不应该移动,所以要用胶带或大头针把所有东西都固定好。

你现在应该可以把所有东西都密封在容器里了,连接传感器板的电线不会被挤压或变形。一旦你高兴,打开它并连接电源,然后再次关闭它并检查你的连接。确保充电宝能给树莓派至少几个小时的电力。

检测软件

在这个特性的末尾添加脚本,并将其保存为rainbot.py(或从GitHub下载)到一个方便的位置,比如~/pi/rainbot。一旦就位,通过运行python3 ~/pi/rainbot/rainbo.py来执行一个初始测试。你应该每五秒钟就会看到一个读数:

如果是干的,是“真”;如果是湿的,是“假”。按CTRL+C停止脚本。

Pushover:在你的手机上获取降雨警报

为了获得提醒,我们将使用Pushover,这是一个向智能手机推送消息的服务(有七天的免费试用)。

注册pushover.net后,你将看到一个“用户密钥”,把这个复印一份。按照说明创建一个“应用程序令牌”。

编辑脚本,把现有的API键值替换成你自己的(在提示的地方),然后在你的手机安装了“pushover”程序。

再次运行脚本。把其中一块感应板稍微弄湿。控制器上应该亮一盏灯。如果一切正常,几秒钟后你的手机就会显示一个警报。

自动运行雨探测器

让我们设置脚本在启动时运行。 作为超级用户创建以下文件:

sudo nano /lib/systemd/system/rainbot.service
填入:

[Unit]
Description=Rainbot
After=multi-user.target

[Service]
Type=idle
ExecStart=/usr/bin/python3 /home/pi/rainbot/rainbot.py

[Install]
WantedBy=multi-user.target

按CTRL+X保存并退出nano。

然后输入以下命令:

sudo chmod 644 /lib/systemd/system/rainbot.service
sudo systemctl enable rainbot.service
sudo systemctl daemon-reload
重新启动树莓派。脚本将在重新启动时运行(尽管您不会看到任何输出)。再用水测试一下。

为你的雨天探测器做改进

Pushover很方便,而且可以很容易地替换为任何你喜欢的函数。检查的频率可以改变(目前是每五秒一次)。或者把模拟电路改成数字电路,然后用A0输出来测量雨下得有多大。

如果你开始记录这些数据,这对气象站项目来说也是一个很好的起步。你还可以增加一个使用后安全关闭树莓派的按钮。

编程计算加油轮次 —— 外国人是怎么省油的

我最近在开一辆烧 93 号汽油的车子。根据汽车制造商的说法,它只需要加 91 号汽油就可以了。然而,在美国只能买到 87 号、89 号、93 号汽油。而我家附近的汽油物价水平是每增加一号,每加仑就要多付 30 美分,因此如果加 93 号汽油,每加仑就要多花 60 美分。为什么不能节省一些钱呢?

一开始很简单,只需要先加满 93 号汽油,然后在油量表显示油箱半满的时候,用 89 号汽油加满,就得到一整箱 91 号汽油了。但接下来就麻烦了,剩下半箱 91 号汽油加上半箱 93 号汽油,只会变成一箱 92 号汽油,再接下来呢?如果继续算下去,只会越来越混乱。这个时候 Python 就派上用场了。

我的方案是,可以根据汽油的实时状态,不断向油箱中加入 93 号汽油或者 89 号汽油,而最终目标是使油箱内汽油的号数不低于 91。我需要做的是只是通过一些算法来判断新旧汽油混合之后的号数。使用多项式方程或许也可以解决这个问题,但如果使用 Python,好像只需要进行循环就可以了。

#!/usr/bin/env python

# octane.py

o = 93.0

newgas = 93.0 # 这个变量记录上一次加入的汽油号数

i = 1

while i < 21: # 20 次迭代 (加油次数)

    if newgas == 89.0: # 如果上一次加的是 89 号汽油,改加 93 号汽油

        newgas = 93.0

        o = newgas/2 + o/2 # 当油箱半满的时候就加油

    else: # 如果上一次加的是 93 号汽油,则改加 89 号汽油

        newgas = 89.0

        o = newgas/2 + o/2 # 当油箱半满的时候就加油

    print (str(i) + ‘: ‘+ str(o))

    i += 1

在代码中,我首先将变量 o(油箱中的当前混合汽油号数)和变量 newgas(上一次加入的汽油号数)的初始值都设为 93,然后循环 20 次,也就是分别加入 89 号汽油和 93 号汽油一共 20 次,以保持混合汽油号数稳定。

1: 91.0

2: 92.0

3: 90.5

4: 91.75

5: 90.375

6: 91.6875

7: 90.34375

8: 91.671875

9: 90.3359375

10: 91.66796875

11: 90.333984375

12: 91.6669921875

13: 90.3334960938

14: 91.6667480469

15: 90.3333740234

16: 91.6666870117

17: 90.3333435059

18: 91.6666717529

19: 90.3333358765

20: 91.6666679382

从以上数据来看,只需要 10 到 15 次循环,汽油号数就比较稳定了,也相当接近 91 号汽油的目标。这种交替混合直到稳定的现象看起来很有趣,每次交替加入同等量的不同号数汽油,都会趋于稳定。实际上,即使加入的 89 号汽油和 93 号汽油的量不同,也会趋于稳定。

因此,我尝试了不同的比例,我认为加入的 93 号汽油需要比 89 号汽油更多一点。在尽量少补充新汽油的情况下,我最终计算到的结果是 89 号汽油要在油箱大约7/12满的时候加进去,而 93 号汽油则要在油箱1/4满的时候才加进去。

我的循环将会更改成这样:

if newgas == 89.0:

    newgas = 93.0

    o = 3*newgas/4 + o/4

else:

    newgas = 89.0

    o = 5*newgas/12 + 7*o/12

以下是从第十次加油开始的混合汽油号数:

10: 92.5122272978

11: 91.0487992571

12: 92.5121998143

13: 91.048783225

14: 92.5121958062

15: 91.048780887

如你所见,这个调整会令混合汽油号数始终略高于 91。当然,我的油量表并没有 1/12 的刻度,但是 7/12 略小于 5/8,我可以近似地计算。

一个更简单地方案是每次都首先加满 93 号汽油,然后在油箱半满时加入 89 号汽油直到耗尽,这可能会是我的常规方案。就我个人而言,这种方法并不太好,有时甚至会产生一些麻烦。但对于长途旅行来说,这种方案会相对简便一些。有时我也会因为油价突然下跌而购买一些汽油,所以,这个方案是我可以考虑的一系列选项之一。

当然最重要的是:开车不写码,写码不开车!

via: https://opensource.com/article/18/10/python-gas-pump

作者:Greg Pittman 译者:HankChow 校对:wxy 编译:Linux.cn

用上Micro:bit离线开发工具Windows 10版本

Micro:bit 是一款由英国广播电视公司(BBC)为青少年编程教育设计,并由微软,三星,ARM,英国兰卡斯特大学等合作伙伴共同完成开发的微型电脑。

为了降低门槛,早期只提供了Web版的在线开发工具(makecode.microbit.org)供大家创作。

可随着玩家数量的增多以及对调试效率的追求,离线开发工具成为了很多玩家追求的目标。

后来官方提供了Android、iOS……等需要借助蓝牙,借助Web的伪离线版本。但始终没有为广大Windows用户提供一个支持积木编程的“真”离线版本。

前几天逛Windows App Store,突然发现 Micro:bit 官方 IDE 支持Windows 10了。

虽然还在BETA,但总比在线版好用多了 —— 代码编译下载后还要手动写入程序,效率很低。

该版本同时支持“积木”和 JavaScript 两种编程方式。界面和Web在线版一样,但不用担心像Web版那样,经常刷不出来。

写入程序时也不用多余工序 —— 在 Micro:bit 硬件联机状态点击“下载”即可。

怎么样?还不赶紧试一下,为自己提高创作效率。

另外也欢迎Micro:bit的同好关注我们的公众号“IoT前哨站”,一起来为物联网学习添砖加瓦。

Scratch 2.0 安装和配置

Scratch是一款由麻省理工学院(MIT) 设计开发的少儿编程工具。其特点是:使用者可以不认识英文单词,也可以不会使用键盘。构成程序的命令和参数通过积木形状的模块来实现。用鼠标拖动模块到程序编辑栏就可以了。

IoT前哨站这里来教大家安装和配置 Scratch 2.0的IDE(集成开发环境)。

第一步:登录官方网站。 https://scratch.mit.edu/download

你能看到目前该 IDE 主要支持 Mac OS X 和 Windows 两种操作系统。

第二步:下载并安装Adobe AIR(请对应自己当前的操作系统)

第三步:下载并安装Scratch Offline Editor(请对应自己当前的操作系统)

好了,这样整个环境就可以用了。

 

利用TurniBit开发板DIY一套自动窗帘模拟系统

一、准备工作

TurnipBit 开发板 一块

下载数据线 一条

微型步进电机(28BYJ-48) 一个

步进电机驱动板(ULN2003APG) 一块

光敏传感器 一个

TurnipBit 扩展板 一块

接入网络的电脑 一台

在线可视化编程器

二、步进电机的介绍

本次实验采用的是28BYJ-48 四相八拍电机,电压DC5V~12V。

24BYJ48名称的含义:

24:电机外径24mm

B:步进电机中步字的拼音首字母

Y:永磁中永字的拼音首字母

J:减速的减字拼音首字母

48:四相8步

工作原理

步进电机是将电脉冲信号转变为角位移或线位移的开环控制电机,是现代数字程序控制系统中的主要执行元件,应用极为广泛。在非超载的情况下,电机的转速、停止的位置只取决于脉冲信号的频率和脉冲数,而不受负载变化的影响,当步进驱动器接收到一个脉冲信号,它就驱动步进电机按设定的方向转动一个固定的角度,称为“步距角”,它的旋转是以固定的角度一步一步运行的。可以通过控制脉冲个数来控制角位移量,从而达到准确定位的目的;同时可以通过控制脉冲频率来控制电机转动的速度和加速度,从而达到调速的目的。


28BYJ-48 步进电机参数表

上表中启动频率≥550 P.P.S(每秒脉冲数),意思是要想正常启动,需要单片机每秒至少给出550个步进脉冲。那么每一节拍需要持续的时间就是1S/550≈1.8ms,所以控制节拍刷新的速率应大约1.8ms。

驱动原理

当连续不断的给电机发送控制脉冲时,电机就会不断的转动。每一个脉冲信号对应步进电机的某一相或两相绕组的通电状态改变一次,对应转子就会转过一定的角度(步距角)。当通电状态的改变完成一个循环时,转子转过一个齿距。

四相步进电机可以在不同的通电方式下运行,常见的通电方式:

四拍(单相绕组通电):A-B-C-D-A…

双四拍(双相绕组通电):AB-BC-CD-DA-AB-…

八拍: A-AB-B-BC-C-CD-D-DA-A…

三、器件的连接

1、将步进电机白色接头插到驱动板对应的座子上。

2、TurnipBit对应插入扩展板,记住带有LED灯和按键的一面朝向扩展板带有针脚的一侧。

3、将驱动板与TurnipBit扩展板连接起来。接线图如下:

4、将光敏传感器与TurnipBit扩展板连接起来。接线图如下:

四、开始编程

1、之前的教程一直都是使用拖拽可视化编程,这种方式可以快速让零基础小伙伴入门,但是在实际项目或工作中,还是要直接敲代码的。今天就给大家介绍一下TurnipBit的可视化编程器的另一项功能–代码编程。

之前看过编程的小伙伴,不难发现,一打开编辑器首先进入的就是代码编程器界面。如下图:

2、接下来用代码实现对步进电机的控制和光照数据的采集。

当光照变弱时,步进电机顺时针旋转一周,模拟关闭窗帘的操作;

当光照变强时,步进电机逆时针旋转一周,模拟打开窗帘的操作;

完成源代码:

# 在这里添加Python代码
from microbit import *
  Pin_All=[pin5,pin8,pin11,pin12]
  #转速(ms) 数值越大转速越慢 最小值1.8ms
speed=5
  STEPER_ROUND=512 #转动一圈(360度)的周期
ANGLE_PER_ROUND=STEPER_ROUND/360 #转动1度的周期
  isOpen=False#表示窗帘的状态 True:打开 False:关闭
  def SteperWriteData(data):
    count=0
    for i in data:
        Pin_All[count].write_digital(i)
        count+=1
def SteperFrontTurn():
    global speed
    SteperWriteData([1,1,0,0])
    sleep(speed)
      SteperWriteData([0,1,1,0])
    sleep(speed)
      SteperWriteData([0,0,1,1])
    sleep(speed)
    SteperWriteData([1,0,0,1])  
    sleep(speed)
def SteperBackTurn():
    global speed
    SteperWriteData([1,1,0,0])
    sleep(speed)
    SteperWriteData([1,0,0,1])  
    sleep(speed)
    SteperWriteData([0,0,1,1])
    sleep(speed)
      SteperWriteData([0,1,1,0])
    sleep(speed)
  def SteperStop():
    SteperWriteData([0,0,0,0])
def SteperRun(angle):
    global ANGLE_PER_ROUND
      val=ANGLE_PER_ROUND*abs(angle)
    if(angle>0):
        for i in range(0,val):
            SteperFrontTurn()
    else:
        for i in range(0,val):
            SteperBackTurn()
    SteperStop()
while True:
    light=pin0.read_analog()#读取光敏传感器传递过来的模拟量数据
    #数值越大说明光照度越小
    if light>400:
        if isOpen:
            isOpen=False
            SteperRun(-360)#光照小于设定的值,关闭窗帘
    else:
        if isOpen==False:
            isOpen=True
            SteperRun(360)#光照大于设定的值,打开窗帘

* 本文作者:bodasister,来自FreeBuf.COM

用树莓派构建一个婴儿监视器

香港很湿热,即便是晚上,许多人为了更舒适,在家里也使用空调。当我的大儿子还是一个小婴儿的时候,他卧室的空调还是需要手动控制的,没有温度自动调节的功能。它的控制器只有开或者关,让空调整个晚上持续运行会导致房间过冷,并且也浪费能源和钱。

我决定使用一个基于树莓派的物联网解决方案去修复这个问题。后来我进一步为它添加了一个婴儿监视器插件。在这篇文章中,我将解释我是如何做的,它的代码在 我的 GitHub 页面上。

设计空调控制器

解决我的问题的第一个部分是使用了一个 Orvibo S20 可通过 WiFi 连接的智能插头和智能手机应用程序。虽然这样可以让我通过远程来控制空调,但是它还是手动处理的,而我希望尝试让它自动化。我在 Instructables 上找到了一个满足我的需求的项目:他使用树莓派从一个AM2302 传感器上测量附近的温度和湿度,并将它们记录到一个 MySQL 数据库中。

使用压接头将温度/湿度传感器连接到树莓派的相应 GPIO 针脚上。幸运的是,AM2302 传感器有一个用于读取的 开源软件,并且同时提供了 Python 示例。

与我的项目放在一起的用于 AM2302 传感器 接口的软件已经更新了,并且我使用的原始代码现在应该已经过时了,停止维护了。这个代码是由一个小的二进制组成,用于连接到传感器以及解释读取并返回正确值的 Python 脚本。

将传感器连接到树莓派,这些 Python 代码能够正确地返回温度和湿度读数。将 Python 连接到 MySQL 数据库很简单,并且也有大量的使用 python-mysql 绑定的代码示例。因为我需要持续地监视温度和湿度,所以我写软件来实现这些。

事实上,最终我用了两个解决方案,一是作为一个持续运行的进程,周期性(一般是间隔一分钟)地获取传感器数据,另一种是让 Python 脚本运行一次然后退出。我决定使用第二种方法,并使用 cron 去每分钟调用一次这个脚本。之所以选择这种方法的主要原因是,(通过循环实现的)持续的脚本偶尔会不返回读数,这将导致尝试读取传感器的进程出现堆积,最终可能会导致系统挂起而缺乏可用资源。

我也找到了可以用程序来控制我的智能插头的一个 Perl 脚本。它是解决这种问题所需的一部分,因此当某些温度/湿度达到触发条件,将触发这个 Perl 脚本。在做了一些测试之后,我决定去设计一个独立的 checking 脚本,从 MySQL 去拉取最新的数据,然后根据返回的值去设置智能开关为开或关。将插头控制逻辑与传感器读取脚本分开,意味着它们是各自独立运行的,就算是传感器读取脚本写的有问题也没事。

配置一个打开/关闭空调的温度值是很有意义的,因此,我将这些值转移到控制脚本读取的配置文件中。我也发现,虽然传感器的值一般都很准确,但是,偶尔也会出现返回不正确读数的情况。这个传感器脚本被修改为不向 MySQL 数据库中写入与前值差异非常大的值。同样也在配置文件中写入了连续读取的温度/湿度之间允许的最大差异值,如果读取的值处于这些限制值以外,这些值写不会提交到数据库中。

虽然,做这个自动调节器似乎花费了很多努力,但是,这意味着,记录到 MySQL 数据库的数据是有效的、可用于进一步去分析识别用户使用模式的有用数据。可以用多种图形方式去展示来自 MySQL 数据库中的数据,而我决定使用 Google Chart 在一个 Web 页面上显示数据。

添加一个婴儿监视摄像头

树莓派开放的性能意味着我可以不断地为它增加功能 —— 并且我有大量的未使用的可用 GPIO 针脚。我的下一个创意是去添加一个摄像头模块,将它放在孩子的卧室中,配置它去监视婴儿。

我需要一个能够在黑暗环境中工作的摄像头,而 Pi Noir 摄像头模块是非常适合这种条件的。Pi Noir 除了没有红外过滤之外,同样也是树莓派常用的摄像头模块。这意味着它在白天时的图像可能有点偏紫色,但是它可以在黑暗中借助红外灯来显示图像。

现在我需要一个红外光源。由于树莓派非常流行,并且进入门槛很低,因此它有大量的外围配件和插件。也有适合它的各种红外光源,我注意到的其中一个是 Bright Pi。它可以从树莓派上供电,并且它很适合为树莓派的摄像头模块提供红外光和普通光。它唯一的缺点是太考验我的焊接技能了。

我的焊接技能还是不错的,但是可能花费的时间比其他人更长。我成功地连接了外壳上所有的红外 LEDs,并将它们连接到树莓派的 GPIO 针脚上。这意味着树莓派能够编程控制红外 LED 是否点亮,以及它的亮度。

通过一个 Web 流去公开捕获的视频也很有意义,因为这样我就可以从 Web 页面上查看温度和湿度的读数图表。进一步研究之后,我选择了一个使用 M-JPEG 捕获器的 流软件。通过 Web 页面公开 JPG 源,我可以在我的智能手机上去连接摄像头查看程序,去查看摄像头的输出。

做最后的修饰

没有哪个树莓派项目都已经完成了还没有为它选择一个合适的外壳,并且它有各种零件。在大量搜索和比较之后,有了一个显然的 赢家:SmartPi 的乐高积木式外壳。乐高的兼容性可以让我去安装温度/湿度传感器和摄像头。下面是最终的成果图:

在这以后,我对我的这个作品作了一些改变和更新:

    • 我将它从树莓派 2 Model B 升级到了树莓派 3,这意味着我可以使用 USB WiFi 模块。
    • 我用一个 TP-Link HS110 智能插头替换了 Orvibo S20。
    • 我也将树莓派插到了一个智能插头上,这样我就可以远程重启/重置它了。
    • 我从树莓派上将 MySQL 数据库移走了,它现在运行在一个 NAS 设备上的容器中。
    • 我增加了一个非常 灵活的三角夹,这样我就可以调整到最佳角度。
    • 我重新编译了 USB WiFi 模块,禁用了板载 LED 指示灯,这就是升级到树莓派 3 的其中一个好处。
    • 我因此为我的第二个孩子设计了另外一个监视器。
    • 因为没有时间去折腾,我为我的第三个孩子购买了夜用摄像头。

想学习更多的东西吗?所有的代码都在 我的 GitHub 页面上。

(https://github.com/jervine/rpi-temp-humid-monitor)

想分享你的树莓派项目吗?将你的故事和创意发送给我们。

via: https://opensource.com/article/18/3/build-baby-monitor-raspberry-pi
作者:Jonathan Ervine 译者:qhwdw 校对:wxy 来自:Linux中国

为什么说最适合IoT开发人员的发行版是Ubuntu

一句话前言:本文说的是用来“写”代码的机器,不是主要用来“跑”代码的机器。

适合做开发的桌面系统很多,但适合做IoT开发的并不多。

首先要支持各种硬件驱动和外设,再则要方便安装各种开源或闭源的IDE和插件。

很多朋友可能会说Mac OS X不错啊,Mac OS X是不错,但对应的Macbook实在不合群,一旦要用到USB口或者以太网口什么的……

Windows更适合用来进行Windows IoT版开发,而大部分嵌入式设备跑的是Linux……

好吧,那我们在Linux阵营里找。

此刻的答案可能要多如牛毛了,每个发行版的粉丝们都会讲出自己的理由。但我还是要说出我的选择 —— Ubuntu Desktop。

Eclipse 基金会在2017年四月完成了由 713 位开发者回答的 IoT 开发者那个调查,他们被问到了有关 IoT 编程语言、云平台、IoT 操作系统、消息协议(MQTT, HTTP)、IoT 硬件架构等问题。

当被问及大家在IoT开发时采用的操作系统/Linux发行版时,Raspbian 以 45.5% 的比例遥遥领先,Ubuntu/Ubuntu Core 紧随其后,使用比例达到了 44.0%。

嗯,答案看起来应该是Raspbian才对。

可大家别忘了Raspbian一直是跑在树莓派上的,而我们这里说的是技术人员平时用的开发环境。

Ubuntu/Ubuntu Core的官方支持列表大家有目共睹,不管是树莓派还是Orange Pi、DragonBoard 410c、Intel NUC……都能跑。

况且市面上很多公司的产品都在基于Ubuntu Core做定制,不管是大疆、Erle Robotics的无人机还是Rigado的IoT网关。

这样一对应,用Ubuntu的桌面来开发Ubuntu IoT这类系统的软件似乎再合适不过。很多包和组件都是配套的,有官方支持。

为各类设备做内核编译等操作的时候,运行Ubuntu Desktop的高性能X86桌面电脑可以快速交叉编译,搞定你需要的组件。不管是Ubuntu系统的,还是Raspbian系统的。

另外,近期开始流行的跨发行版Snappy包管理器,最初就是为Ubuntu系统构建的。其管理的Snap 包可对 App 和 Ubuntu Core 软件本身进行原子级事务性更新。具有沙箱的属性,不可以随意访问外部资源,和系统的其它部分隔离开来,并通过设计好的安全策略与其他 Snap 进行交互。这也是 Ubuntu Core 具有极强安全性的原因。

写了半天,突然发现Ubuntu官网已经把18.04 LTS这一“长期支持版”正式上线了。

是的,作为一个IoT开发平台,LTS —— “Long Term Support”也很重要。也许这就是我喜欢用Ubuntu Desktop来写代码的原因吧!

版权声明:本文为“IoT前哨站”原创,转载请注明原文作者和出处。

如何在树莓派的终端测试网速

Ookla 的 Speedtest 网速测试相信做网络的人大多都用过。 这在PC桌面和移动APP上是很简单。登陆点击“Go”即可。

它会自动测试你的机器到最近服务器的网速。 如果你只有树莓派终端,那怎么在命令行下做测试呢?

首先,我们要安装speedtest-cli这个包,树莓派直接apt-get一下即可。如图所示。

直接执行speedtest这个命令,就可以自动测试了,这里我的树莓派在访问北京电信的一个服务器。这里可以看到下载速度3.40 Mbit/s,上传速度3.87 Mbit/s。

如果想查看北京还有那些其他服务器,可以用:speedtest-cli –list | grep -i beijing 这个命令。另外,如果你还想生成一张图发给 别人的话,可以在后面加个“–share”参数。

然后就可以得到对应的图片网址了。如图所示。

从这个图上可以看到,我这个网速比全国62%的机器都要慢,略有遗憾。

 

用树莓派和 RFID 做能识别音乐专辑的桌子

有不少年轻用户还会追黑胶唱片。

他们的着眼点并不在体验传统的味道上,而是觉得收集黑胶或者其他实体专辑是一种支持歌手出唱片或提升“仪式感”的行为。

虽然不怎么听,但买起来也不会少。

确实,现在要听个实体专辑确实也不容易。黑胶的话经不起折腾,听 CD 也不方便。而且现在的人已经习惯了那种以单曲、EP 为主的音乐消费模式,很少人能够坚持把一张专辑完完整整听完的。

所以在声音体验也没有差太多的前提下,与其去不断切歌、换碟,倒不如直接用流媒体来得方便。

但其实,现在有人还想去玩“实体专辑”。GitHub 上有一位用户,就通过树莓派做了一个识别感应器,让自家的 Google Home 用上“实体专辑”。

根据 The Verge 的报道,这位来自 GitHub 上的用户叫“hoveeman”,他将一个射频识别读卡机和树莓派 Raspberry Pi Zero 连接起来,并开发了一套专用的程序。安装上这套程序后,树莓派能够给家中的 Google Home 发出指令,让它播放相应的专辑。

在这套组合中,射频识别读卡器 RFID 模块的任务就是用来识别“实体专辑”。

这些“实体专辑”,其实是 hoveeman 自己做的一些小卡片。小卡片的表面印着专辑封面、名称和表演者,卡片内部则呆在了一块小型识别芯片。当用户将芯片放到 RFID 模块上,模块就能够识别出相应的信息,传输到 Raspberry Pi Zero 上。电脑处理后,就会发送的 Google Home 上,让它播放相应的专辑。

这个模块能够隐藏在家居产品当中,不管是木桌还是凳子,只要不阻碍 RFID 识别的,都能够藏在里面。虽然这套设备带来的解决方案有点“多此一举”,但现在看起来有点意思。至少,它比你经常换 CD 来得方便。

现在,Hoveeman 将这套解决方案都上传到 GitHub 上。你可以在以下网址:

https://github.com/hoveeman/music-cards

查到它用过的设备和代码,自己做一套相同的出来。

这个其实有点像用 RFID 来控制 Spotify 的方案,那个方案也是用识别卡片来让智能设备播放 Spotify 中的专辑或特定播放列表,做法和实现目标基本上没有什么大分别。

这些方案对于开发者来说,也都是自娱自乐的东西而已。

毕竟,现在的人确实也不怎么喜爱这种消费方式。他们只需要一个简单的听歌方案,而流媒体服务正好能够给他们最简单直接的体验,有这个来确保基本需求之后,其他东西也不重要。

转自 ifanr

Windows平台也高效的GNU编译工具链 —— MSYS2

MSYS:Minimal GNU(POSIX)System on Windows,是一个小型的GNU环境,包括基本的bash,make等等。

而MSYS2除了集成了MinGW这个精简的Windows编译器以外,还集成了包管理器等等。

MSYS2可以在Windows下搭建一个完美的类Linux环境,包括bash、vim、gcc、make等工具都可以通过pacman这个包管理器来添加和卸载 。使用界面如图所示。

如果要安装git工具,可以这样。

是不是很方便?顺便说一句,高性能 Web 平台OpenResty的64位Windows版本也是用这个编译的。

安装限制:

  • MSYS2 不能安装在FAT* 分区。
  • MSYS2 仅支持Windows XP以后的版本。

基本工具包使用:

  • pacman -Sy 更新软件包数据
  • pacman -Syu 更新所有包
  • pacman -Ss xx 查询软件xx的信息
  • pacman -S xx 安装软件xx