树莓派挖矿教程之Chia篇

随着数字货币的兴起,不少人又开始了挖矿生涯。

除了经典的显卡和CPU挖矿以外,其实业内还有一种硬盘挖矿的方法。这就是号称“绿色比特币”的Chia。

目前的价格大概是4500-5500RMB一枚。

它倒是不怎么耗电,但很耗硬盘。所以你接个树莓派也可以挖。

基本配置:

树莓派4B(至少4GB内存版本)

64位系统(不一定要RaspberryPi OS)

大容量硬盘一块

步骤:

先到chia.net下载工具。

找到树莓派的版本,目前官方测过的主要就是树莓派4B。

直接安装或者下载后安装都可以。

安装完启动该程序。

别忘了24个助记词。

把P好的文件导入。当然,如果你不嫌慢,在树莓派上生成Plots也可以。

如果硬盘挂载顺利,可以看到现成的Plot文件。

导入以后你可以在标签栏里看到它们。

在网络同步完成之后,你就可以开始挖了。

Chia挖矿的入门,就是这么简单。

树莓派发布PoE+ HAT新款以太网供电模块

继第一款以太网供电模块——PoE HAT受到业界好评以后,树莓派基金会再接再厉,于2021年5月下旬推出了PoE+ HAT供电模块,实现了802.3at标准,且兼容802.11af ,可对树莓派提供最高25.5W的功率。

该模块可以在0~50度的环境下工作,兼容树莓派3B+、4B等型号。

PoE+ HAT模块外观
装配好的状态
新款和老款的对比

2018年底,树莓派基金会就发布了第一代PoE HAT,并在很短时间里成为最畅销的配件之一。能看到它已被用于数字标识牌和工厂自动化等工业领域,以及其它需要用一根电缆同时传输电力和数据的场合。

PoE+ HAT输出2.5A电流的热成像

新款PoE+ HAT的价格和第一代PoE HAT相同,还是20美元一个。预计将会在2021年6月开始供货,请有需要的朋友注意当地经销商公布的信息。

用Python实现经典游戏《小蜜蜂》

估计很多老玩家在小时候都玩过Galaxian(小蜜蜂)吧。这款射击游戏的鼻祖叫《太空侵略者》,上手简单,但可玩性很强。

高手用C语言精准复现的1978年《太空侵略者》版本

《太空侵略者》大火之后,新推出的Galaxian(小蜜蜂)于1979年成为其最大竞争对手。由Namco发行的Galaxian为外星敌人提供了新的色彩和不可预测的动作,后者不但会发射炮弹,还会自杀式俯冲攻击。

《Galaxian》在街机游戏中大受欢迎,以至于Namco在两年后又发布了续作《Galaga》——这款游戏使攻击模式更加复杂。

很难说《Galaxian》究竟有多少移植和克隆的版本,因为几乎每个家用游戏机上都有类似版本。

小霸王平台的《Galaxian》

玩家在《Galaxian》中的角色与《太空侵略者》类似,驾驶一艘飞船与一支外星舰队战斗。

与《太空侵略者》不同的是,在《Galaxian》中,外星人总会打破队形向玩家的飞船发起俯冲轰炸。

玩家需要摧毁所有敌人,然后进入下一关。随着玩家的推进,一波又一波的敌人将让过关变得更加困难。

我们这里将着眼于外星人的俯冲机制,用Pygame Zero开发《Galaxian》游戏的核心功能。

用Pygame Zero开发的版本

首先,《Galaxian》拥有一个纵向显示画面,所以我们将游戏区域的宽度和高度分别设置为600和800。

接下来,我们可以用位图创建一个滚动的星空背景。​将位图逐渐往屏幕下方移动,用第二颗恒星来填充第一颗恒星向下滚动时留下的空间,我们还可以在后面添加另一个静态背景图像,这将提供一些视野深度。

然后,我们将玩家的飞船设置为Actor。并在update()函数中捕获左右箭头键,以便在屏幕上左右移动飞船。我们也可以用空格键发射子弹,子弹会沿屏幕向上移动,直到击中外星人或离开屏幕顶部。

和原版《Galaxian》一样,你一次只能发射一颗炮弹,所以我们只需要一个Actor。

外星人排成一行,一起在屏幕上左右移动。在这个例子中,我们只画一种类型的外星人,共画两行。你可以添加额外的类型和任意多行。当我们创建alien Actors时,我们还可以添加一个状态标志,我们需要确定当它们打破队形时,它们在行的哪一边,两边朝相反的方向飞行。在这种情况下,每行左边有4个外星人,右边有4个。

一旦它们在列表中建立起来,我们就可以在每次更新时遍历列表,并向前或向后移动它们。

当我们在移动外星人时,我们也可以查看它们是否与炮弹或玩家飞船相撞。

如果与炮弹碰撞,那么外星人将使用状态标志连续播放爆炸的那几帧,当状态达到5时,它们将不再被绘制到界面上。

如果碰撞发生在玩家的飞船身上,那么玩家会死亡,游戏也就结束了。

我们也可以检查一个随机数,看看外星人是否开始轰炸。如果是,我们将状态设置为1,这将开始调用flyAlien()函数。这个函数会检查外星人的位置,并根据侧边的不同改变外星人的角度,然后根据角度更改x和y坐标。为了方便大家看明白,我们这里处理的比较简单,你也可以使用一些乘数变量将其折叠到x坐标和角度上,将其收窄。

相关代码:

https://github.com/IoToutpost/Python_game

要运行调试请先安装Pygame Zero。

现在大家应该初步掌握了Galaxian游戏的基础知识。你可以试着完善它了。

如何让树莓派Pico支持LoRaWAN

LoRaWAN是由LoRa联盟推出的一个低功耗广域网规范,这一技术可以为电池供电的无线设备提供区域、国家甚至全球的网络。

它瞄准了物联网中的一些核心需求,比如安全的双向通讯、移动化和本地服务。该技术无需复杂配置,即可以让智能设备实现无缝的互操作,给物联网领域的用户、开发者和企业自由操作权限。

使用合理的LoRa天线,你可以通过网关将电池供电的传感器连到互联网,信号覆盖半径大约15公里。缺点是可用带宽将以字节为单位,而不是以兆字节甚至千字节为单位。

一个Adafruit RFM95W LoRa无线电装置连接到树莓派Pico

Arduino LoRa库的作者Sandeep Mistry为树莓派Pico搞定了LoRa和以太网支持。

目前他的库能让Semtech SX1276无线电模块更好的工作在Pico和其它RP2040芯片的开发板上。

当然,这意味着像Adafruit的RFM95W、LoRa FeatherWing这样的模块,也可以获得很好的支持。

LoRaWAN覆盖情况

要使用LoRaWAN启用的Pico,你(的设备)需要在LoRa网关覆盖的范围内。幸运的是,有一个名叫“The Things Network”的LoRaWAN网络,它几乎覆盖全球。

关于The Things Network的视频:

https://mp.weixin.qq.com/s/GIPuEb6qQMOmHcPDRXmF9A

这取决于你当前所处的地理位置,很可能你已经在覆盖范围内了。比如英国境内的LoRa网络情况(如图)。

一个LoRaWAN基站的成本在几千美元的日子已经一去不复返了。现在你可以花75英镑买个LoRa网关。

注:The Things Network 是 LoRaWAN 行业里著名的 Network Server 提供方,许多国外的厂家,都是默认连接 TTN 的平台。

作为 LoRa 联盟董事会成员,TTN 现在已经在全球90多个国家和地区部署了3000多个基站,这个数字还在飞速增长中。TTN一直秉承的 “Let’s build this thing together”的开放文化也吸引了超过3万名开发者加入 TTN 社区。

获取源码

如果你已经设置并可以使用树莓派Pico工具链,请确保你的 pico-sdk 是最新的。如果没有,你应该首先设置C/C++ SDK,然后再从GitHub中获取项目。

$ git clone --recurse-submodules https://github.com/sandeepmistry/pico-lorawan.git

$ cd pico_lorawan

PICO_SDK_PATH 在继续操作之前,请确保做好设置。举例来说,如果你要在一个树莓派上构建相关应用,你要先运行 pico_setup.sh 脚本,或者按照我们的指示入门指南。

先设置好环境变量。

$ export PICO_SDK_PATH = /home/pi/pico/pico-sdk

之后,你可以准备构建库和示例应用程序。但是在执行此操作之前,我们需要做另外两件事:在要存储数据的云基础架构上进行配置,并将LoRa无线电模块连接到Raspberry Pi Pico。

设置一个应用程序

The Things Network 目前正在从V2迁移到V3堆栈。由于我的家庭网关是几年前设置的,因此我仍在使用V2软件,尚未迁移。

因此,我将构建一个V2风格的应用程序。但如果你用公共网关或自己构建网关,则可构建V3样式的应用程序。

同理,你可以根据下面的内容逐步完成操作。请注意,对于新的V3堆栈,有一个单独的网络控制台,外观可能有所不同。

地址:https://account.thethingsnetwork.org/users/authorize?client_id=ttn-console&redirect_uri=https:%2F%2Fconsole.thethingsnetwork.org%2Foauth%2Fcallback&response_type=code&state=_wyzCpGx9A

当新网关覆盖范围内的任何LoRa设备将其数据包接收和发送到上游的“The Things Network”时,除非数据包有其它地方可去,否则数据包将被丢弃。换句话说,“The Things Network”需要知道网关接收的数据包路由到哪里。

为了提供此信息,我们首先需要在The Things Network Console中创建一个应用程序 。

然后你需要做的就是输入唯一的Application ID字符串(可以是任何内容)。控制台将生成一个Application EUI和一个默认的Access Key,我们将通过它们,将设备注册到我们的应用程序中。

一旦我们注册了应用程序,我们要做的就是将单个设备(以后可能有多个设备)注册到该应用程序,以便后端知道从该设备路由数据包的位置。

注册设备

可以从控制台的应用程序页面注册我们的设备。

设备ID是易于识别的字符串,用于标识我们的远程设备。

由于Adafruit的RFM9W功能板在包装袋中有像无线入网号那种唯一标识符的贴纸,因此我们可以使用它在字符串后附加以唯一地标识我们的树莓派Pico,因此最终得到类似pico-xy-xy-xy-xy-xy-xy的设备ID名称。

我们还需要生成一个Device EUI2,这是一个64位的唯一标识符。这里我们同样可以使用标签上的唯一标识符,只不过这次我们可以用两个前导零 0000xyxyxyxyxyxyxy填充它,以便生成我们的Device EUI。你也可以使用pico_get_unique_board_id()来生成Device EUI。

相关链接:https://github.com/sandeepmistry/pico-lorawan/blob/main/examples/default_dev_eui/main.c

如果你要在注册后查看“设备”页面,则需要设置Application EUI 2Application Key 2来让开发板与LoRa网络通信。准确地说,是让网络正确地将数据包从你的开发板路由到你的应用程序。

在面包板上接线

现在我们已经设置了云后端,接下来需要做的是将Pico连接到LoRa扩展板。不幸的是,RFM95W breakout 与面包板的连接并不友好 —— 比如这个项目,需要访问电路板两侧的无线电引脚。在这种情况下,板子的分接头宽度有点太大了(对于标准面包板而言)。

幸运的是,这并不是什么大问题,但是你需要准备一束公对母跳线以及面包板。继续接通RFM95W模块和Raspberry Pi Pico。接线板上的引脚和你的Pico之间的映射应该如下所示:

PicoRP20401SX1276 ModuleRFM95W Breakout
3V3 (OUT)VCCVIN
GNDGNDGNDGND
Pin 10GP7DIO0G0
Pin 11GP8NSSCS
Pin 12GP9RESETRST
Pin 14GP10DIO1G1
Pin 21GP16 (SPI0 RX)MISOMISO
Pin 24GP18 (SPI0 SCK)SCKSCK
Pin 25GP19 (SPI0 TX)MOSIMOSI
物理引脚,RP2040引脚,SX1276模块和RFM95W扩展板之间的映射
注:这些引脚是库的默认引脚,可以在软件中更改。

构建和部署软件

现在,我们已经在云上建立了后端,并且我们已经物理上“构建”了无线电,我们可以构建和部署LoRaWAN应用程序。该库提供的示例应用程序之一将从RP2040微控制器上的传感器读取温度,并通过LoRaWAN无线电将其定期发送到你的Things Network应用程序。

void internal_temperature_init() {
    adc_init();
    adc_select_input(4);
    adc_set_temp_sensor_enabled(true);
}

float internal_temperature_get() {
    float adc_voltage = adc_read() * 3.3f / 4096;
    float adc_temperature = 27 - (adc_voltage - 0.706f) / 0.001721f;

    return adc_temperature;
}

继续,进入签出的otaa_temperature_led示例应用程序目录。这个例子用到了OTAA,所以我们需要Device EUI,Application EUI和Application Key。

$ cd examples/otaa_temperature_led/

打开config.h文件,在你喜欢的编辑和更改REGION,DEVICE_EUI,APP_EUI,并APP_KEY在网络控制台中显示的值。该代码期望使用(默认)字符串格式,十六进制数字之间没有空格,而不是字节数组表示形式。

在你喜欢的编辑器中打开config.h文件,并将REGION、DEVICE_EUI、APP_EUI和APP_KEY更改为网络控制台中显示的值。该字符串默认是中间没有空格的十六进制数字,而不是字节数组。

#define LORAWAN_REGION          LORAMAC_REGION_EU868
#define LORAWAN_DEVICE_EUI      "Insert your Device EUI"
#define LORAWAN_APP_EUI         "Insert your Application EUI"
#define LORAWAN_APP_KEY         "Insert your App Key"
#define LORAWAN_CHANNEL_MASK    NULL

我当前位于英国,LoRa广播频率为868MHz。

因此我要将区域设置为LORAMAC_REGION_EU868。

如果你在美国,则使用915MHz,因此需要将区域设置为LORAMAC_REGION_US915。

编辑config.h文件之后,就可以继续构建示例应用程序了。

$ cd ../..
$ mkdir build
$ cd build
$ cmake ..
$ make

如果一切顺利的话,你应该有一个UF2文件在build/examples/otaa_temperature_led/的目录,名字是pico_lorawan_otaa_temperature_led.uf2

现在,你可以按照常规方式将此UF2文件加载到树莓派Pico上。

先接好你的Raspberry Pi Pico开发板和Micro USB电缆,然后再将电缆的另一头插入有集成开发环境的电脑,按住Pico上的BOOTSEL按钮。插入后,松开按钮。

桌面上将会弹出一个名为RPI-RP2的磁盘。

双击将其打开,然后将UF2文件拖放到里面。如果遇到问题,请参阅《入门指南》第4章以 获取 更多信息。

Pico现在将运行LoRaWAN应用程序,如果需要,可以通过打开与Pico的USB串行连接来查看一些调试信息。打开终端窗口并启动 minicom

$ minicom -D /dev/ttyACM0

传送资料

但是,你需要转向Network控制台来查看真实的信息。你应该能看到一个初始连接消息,后面跟着一些帧。每一帧代表一个温度测量值通过LoRaWAN网关,从你的Pico发送到The Things Network网络应用。

有效负载值是Raspberry Pi Pico内部温度传感器以十六进制形式测得的温度。

这有点超出本文的讨论范围,但是你现在可以添加一个解码器和集成功能,使你可以将数据从十六进制解码为人类可读的数据,然后将其保存到数据库中。

为了说明你可以在此处执行的操作的强大功能,请转到应用程序的“有效载荷格式”标签,然后在“解码器”框中输入以下Javascript,然后向下滚动并点击绿色的“保存有效载荷功能”按钮。

function Decoder(bytes, port) {
 
  var decoded = {};
  decoded.temp = bytes[0];
  
  return decoded;
}

返回“数据”选项卡,你应该看到现在以十六进制表示的有效负载已经以摄氏温度为后缀。我们的简单解码器已将有效负载提取并将其转换回Javascript对象。

发送命令

除了发送温度数据之外,该示例应用程序还让你可以直接从The Things Network控制台切换Raspberry Pi Pico上的LED。

进入网络控制台的设备页面,在Downlink Payload框中输入“01”,并点击“发送”按钮。然后切换到Data选项卡。你应该会看到一个“Download scheduled”行,如果继续观察,你应该会看到下行的字节。

当这种情况发生时,你树莓派Pico上的LED应该会亮起!返回网络控制台并在有效载荷箱中输入“00”将(最终)关闭Pico的LED。

请记住,LoRaWAN是远程的,但带宽很低。你不要期望下行命令能即时响应。

接下来还有什么

OTAA示例应用程序是一个非常好的框架,你可以在此基础上构建它,它允许你获取数据并通过LoRa将其发送到云端,还可以从云端向支持LoRa的Pico发送命令。

地址:https://github.com/sandeepmistry/pico-lorawan/tree/main/examples/otaa_temperature_led

小结

可以在树莓派论坛上找到对Pico开发的支持。还有一个(非官方的)Discord频道,很多活跃在社区的人似乎都在那里玩。

地址:https://discord.com/invite/avzEvd6Euv

关于文档的反馈应该作为一个问题发布到GitHub上的pico-feedback仓库,或者直接发布到它关注的相关仓库。

所有的文档,以及其他帮助和链接,都可以在入门页面上找到。

如果你不知道未来它在哪里,你总是可以从你的Pico找到它。如果你要访问相关页面,只需按住你Pico上的BOOTSEL按钮,把它插到你的笔记本电脑或树莓派上,然后释放按钮。最后打开RPI-RP2盘符,单击INDEX.HTM文件。

它将把你带到入门页。

CentOS继承者 —— Rocky Linux 8.3镜像可以下载了

由于CentOS 项目的战略转变,以前作为上游供应商的下游构建版本存在的CentOS(即它会在上游供应商之后收到补丁和更新),现在将转变为一个上游构建版本(即它会在上游供应商纳入之前测试补丁和更新)。

另外,对 CentOS Linux 8 的支持也已从 2029年 5 月 31 日缩短至 2021 年 12 月 31 日。

Rocky Linux 是一个社区化的企业级操作系统。其设计为的是与红帽企业Linux 发行版实现 100% Bug 级兼容,而原因是后者的下游合作伙伴转移了发展方向。目前社区正在集中力量发展有关设施。Rocky Linux 由 CentOS 项目的创始人 Gregory Kurtzer 领导。

目标是像 CentOS 以前那样作为一个下游构建版本,在被上游供应商纳入包更新之后(而不是之前)构建发行。

这是该项目作为红帽企业Linux(RHEL)的一个新的二进制兼容替代品的首次发布。

目前已经提供的x86_64和ARM版本下载链接:

https://rockylinux.org/zh-cn/download/